TOPOLOGY IN AND VIA LOGIC HOMEWORK ASSIGNMENT 2

- Deadline: January 17 at 14:59.
- All exercises are worth the same points.
- The assignment can be completed in teams of up to two people.
- Good luck!

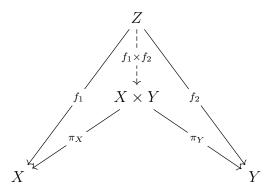
CONTINUITY AND CONTINUOUS FUNCTIONS

Exercise 1. Show the following:

- (1) Give an example of a bijective continuous map which is not a homeomorphism.
- (2) Show that all functions from a discrete space to another space are continuous. If (X,τ) is a space with the *indiscrete* topology, which functions from this space to some other space are continuous?
- (3) Show that if $f: X \to Y$ is a bijective continuous map between topological spaces, then the following are equivalent:
 - f^{-1} is continuous;
 - f is closed;
 - \bullet f is a homeomorphism.

Exercise 2. (Product maps) Let X, Y be topological spaces.

- (1) Show that the product topology is the coarstest topology on the set $X \times Y$ such that the projections $\pi_X : X \times Y \to X$ and $\pi_Y : X \times Y \to Y$ are continuous.
- (2) Show that for any other topological space Z, if there exist continuous functions $f_1:Z\to X$ and $f_2:Z\to Y$, then there exists a unique continuous function $f_1\times f_2:Z\to X\times Y$ making the following diagram commute



(3) Show that this defines the product topology up to homeomorphism: whenever a topological space A together with two continuous functions $\pi_{A,X}: A \to X$ and $\pi_{A,Y}: A \to Y$ satisfy the condition in (2), then there exists a homeomorphism between A

and $X \times Y$. Hint: Given topological spaces X, Y continuous map $f: X \to Y$ is a homeomorphism if and only if there is a continuous map $g: Y \to X$ such that $fg = id_Y$ and $gf = id_X$.

SEPARATION

Exercise 3. Let (X, τ) be a topological space. Let $A \subseteq X$ be a subset. We say that A is dense in X if $\overline{A} = X$.

- (1) Show that \mathbb{Q} is dense in \mathbb{R} .
- (2) Show that if A is dense in X, then A intersects all open subsets of X.
- (3) Let X be a topological spaces and Y a Hausdorff space, and let $A \subseteq X$ be a dense subset. Let $f, g: X \to Y$ be two continuous functions such that $f \upharpoonright_A = g \upharpoonright_A$. Show that f = g.
- (4) Show that if A is dense in X, then for each $x \in X$, there is a filter over A (i.e., $F \subseteq \mathcal{P}(A)$) converging to x.

Exercise 4. Show the following for a T_1 -space X:

- (1) If X is finite, then the topology on it is discrete.
- (2) For each $x \in X$, $\{x\}$ is closed.
- (3) For each $x \in X$, the filter

$$F(x) := \{ S \subseteq X : x \in S \}$$

converges uniquely to x.

Show that the last property is an alternative definition for T_1 -spaces.