TUTORIAL 1

INTRODUCTION TO TOPOLOGY IN AND VIA LOGIC - 2025

BASIC SET THEORY

Exercise 1. The following results are used often in topology: Let X, Y be sets, $f : X \to Y$ a function, $S \subseteq X$, $\{S_i : i \in I\} \subseteq \mathcal{P}(X)$, $T \subseteq Y$ and $\{T_j : j \in J\} \subseteq \mathcal{P}(Y)$. Then

- (1) $f[\bigcup_{i\in I} S_i] = \bigcup_{i\in I} f[S_i].$
- (2) $f[\bigcap_{i \in I} S_i] \subseteq \bigcap_{i \in I} f[S_i].$
- (3) $f^{-1}[\bigcup_{j \in J} T_j] = \bigcup_{j \in J} f^{-1}[T_j].$
- (4) $f^{-1}[\bigcap_{j \in J} T_j] = \bigcap_{i \in J} f^{-1}[T_j].$
- (5) $f[S] \cap T = f[S \cap f^{-1}[T]].$

Furthermore, if $f[\bigcap_{i \in I} S_i] = \bigcap_{i \in I} f[S_i]$ if f is injective. Prove them.

BASIC TOPOLOGY

Exercise 2. Recall that the Euclidean topology τ_{Euc} on \mathbb{R} is defined as follows:

for all $U \subseteq \mathbb{R}$, $U \in \tau_{Euc}$ if and only if $\forall z \in U \exists x, y \in U(z \in (x, y) \subseteq U)$.

Verify that (\mathbb{R}, τ_{Euc}) is a topological space.

Exercise 3. Recall that the Cantor set is defined to be the set 2^{ω} of all binary sequences of length ω . Let $2^{<\omega}$ denote the set of all finite binary sequences. For all $s \in 2^{<\omega}$ and $t \in 2^{\omega} \cup 2^{<\omega}$, we write $s \triangleleft t$ if $t \upharpoonright \text{dom}(s) = s$. Intuitively, $s \triangleleft t$ means that s is an initial subsequence of t. For each $s \in 2^{<\omega}$, we define the set C(s) by

$$C(s) = \{t \in 2^{\omega} : s \triangleleft t\}.$$

Let $B = \{C(s) : s \in 2^{<\omega}\}$. Verify that there is a unique topology τ_{Can} on the Cantor set for which B is a basis.

The topological space $(2^{\omega}, \tau_{Can})$ is called the Cantor space.

CLOSURE, INTERIOR AND NEIGHBOURHOODS

Definition 1. Let (X, τ) be a topological space. We say that a set $U \in \mathcal{P}(X)$ is closed if its complement is open, i.e., if $(X \setminus U) \in \tau$.

Exercise 4. Let (X, τ) be a topological space and $S \subseteq X$. Show that the following hold:

- (1) There exists an open set int(S) such that (i) $int(S) \subseteq S$; and (ii) for all open set U, $U \subseteq S$ implies $U \subseteq int(S)$.
- (2) There exists an closed set cl(S) such that (i) $S \subseteq cl(S)$; and (ii) for all closed set U, $S \subseteq U$ implies $cl(S) \subseteq U$.

Definition 2. The sets int(S) and cl(S) in Exercise 4 are called the interior and the closure of S, respectively. Moreover, we see that a set S is closed if S = cl(S), and open if S = int(S). The operators

 $int: \mathcal{P}(X) \to \mathcal{P}(X), S \mapsto int(S)$

and

 $cl: \mathcal{P}(X) \to \mathcal{P}(X), S \mapsto cl(S)$

are called the topological interior and topological closure, respectively.

Exercise 5. Let (X, τ) be a topological space and $A, B \subseteq X$. Prove the following statements: (1) $A \subseteq cl(A)$ and $int(A) \subseteq A$.

(2) cl(cl(A)) = cl(A) and int(int(A)) = int(A).

(3) $cl(A) = X \setminus (int(X \setminus A))$ and $int(A) = X \setminus (cl(X \setminus A))$.

(4) $cl(A) \cup cl(B) = cl(A \cup B)$ and $int(A) \cap int(B) = int(A \cap B)$.

(5) If $A \subseteq B$, then $cl(A) \subseteq cl(B)$ and $int(A) \subseteq int(B)$.

Is $cl(A) \cap cl(B) = cl(A \cap B)$ or $int(A) \cup int(B) = int(A \cup B)$ true in general? Prove your answer.

Definition 3. Given a topological space (X, τ) and a point $x \in X$, we say that $V \in \mathcal{P}(X)$ is a neighbourhood of x if there is an open set U such that $x \in U \subseteq V$.

Moreover, observe that if a neighbourhood V of a point x is open, the definition simplifies: V is an open neighbourhood of a point x if and only if $x \in V$ and V is open.¹

Let N(x) denote the set of all open neighbourhoods of x, i.e., $N(x) = \{U \in \tau : x \in U\}$.

Exercise 6. Suppose (X, τ) is a topological space and $S \subseteq X$. Then for all $x \in X$, the following are equivalent:

- x is in the closure of S, i.e., $x \in cl(S)$.
- All open neighbourhoods U of x have non-empty intersection with S, i.e.,

$$\forall U \in N(x)(U \cap S \neq \emptyset).$$

There is a proof of this proposition in the note, but try to prove it yourself first :)

TOPOLOGICAL SEMANTICS OF MODAL LOGIC

McKinsey and Tarski [1] proposed interpretations of the unary modal operator \diamond as the closure operator cl and the derived set operator d of a topological space. These interpretations give the topological C-semantics and d-semantics for modal logic.

In this section, we take a closer look at the topological C-semantics of modal logic.

Definition 4. A topological model is a triple $\mathfrak{M} = (X, \tau, \nu)$ where (X, τ) is a topological space and $\nu : Var \to \mathcal{P}(X)$ a function called a valuation for X.

A valuation ν is extended to the set Fm of all modal formulas by the following rules:

$$\nu(\perp) = \emptyset, \ \nu(\varphi \to \psi) = (X \setminus \nu(\varphi)) \cup \nu(\psi) \ and \ \nu(\Diamond \varphi) = cl(\nu(\varphi)).$$

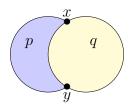
A formula φ is true at x in \mathfrak{M} , notation $\mathfrak{M}, x \models \varphi$, if $x \in \nu(\varphi)$. Note that by definition of the operator $cl : \mathcal{P}(X) \to \mathcal{P}(X)$, the following statements hold:

¹In the literature, you will sometimes find that a neighbourhood is already required to be open. We do not adopt that convention, but simply speak of 'open neighbourhoods' when needed.

- (a) $\mathfrak{M}, x \models \Box \varphi$ if and only if there is $U \in N(x)$ such that $\mathfrak{M}, y \models \varphi$ for all $y \in U$;
- (b) $\mathfrak{M}, x \models \Diamond \varphi$ if and only if for all $U \in N(x)$, there is $y \in U$ such that $\mathfrak{M}, y \models \varphi$.

Exercise 7. Show that (a) and (b) in Definition 4 hold.

Exercise 8. Consider the following topological model, where p is true in the blue area and its border line, and q is true in the yellow area and its border line.



- (1) Draw the region defined by the modal formula $\Diamond p \lor \Box q$.
- (2) Find modal formulas that define the set $\{x, y\}$.

Recall that modal logic S4 is defined to be $\mathsf{K} \oplus \{\Diamond \Diamond p \to \Diamond p, p \to \Diamond p\}$.

Exercise 9. Prove that every theorem of S4 is valid. That is, given any $\varphi \in S4$, $\mathfrak{M}, x \models \varphi$ for all topological model $\mathfrak{M} = (X, \tau, \nu)$ and $x \in X$.

In fact, the converse of Exercise 9 also holds. Thus we have

Theorem 5. S4 is the modal logic of all topological spaces.

Exercise 10. Let (X, τ) be a topological space and $A \subseteq X$. We say that A is regular open if int(cl(A)) = A. Prove the following statements:

(1) if A is open, then $A \subseteq int(cl(A))$.

(2) int(cl(A)) is regular open.

More on topological semantics: d-semantics

There are more than one semantics of modal logic based on topological spaces. The one we have seen in class is also called C-semantics. We now introduce the d-semantics as follows:

Definition 6. Let $\mathcal{X} = (X, \tau)$ be a topological space and $x \in X$. A subset $Y \subseteq X$ is an open neighborhood of x if $x \in Y \in \tau$. Let N(x) be the set of all open neighborhoods of x. For every subset $A \subseteq X$, let d(A) be the derived set of A, i.e.,

$$\mathsf{d}(A) = \{ x \in X : \forall U \in N(x)(U \cap (A \setminus \{x\}) \neq \emptyset) \}.$$

A topological model is a triple $\mathcal{M} = (X, \tau, \nu)$ where $\mathcal{X} = (X, \tau)$ is a topological space and $\nu : \operatorname{Prop} \to \mathcal{P}(X)$ is a function which is called a valuation in \mathcal{X} . A valuation ν is extended to all modal formulas \mathcal{L} as follows:

$$\nu(\neg \varphi) = X \setminus \nu(\varphi), \ \nu(\varphi \lor \psi) = \nu(\varphi) \cup \nu(\psi) \ and \ \nu(\diamondsuit \varphi) = \mathsf{d}(\nu(\varphi)).$$

For each formula φ , φ is d-true at w in \mathcal{M} (notation: $\mathcal{M}, w \models_{\mathsf{d}} \varphi$) if $w \in \nu(\varphi)$. We say that φ is d-valid if $\mathcal{M}, w \models_{\mathsf{d}} \varphi$ for all topological model \mathcal{M} and point w in \mathcal{M} .

Exercise 11. Try to understand the d-semantics given above and show:

- (1) $\diamond \diamond p \rightarrow \diamond p$ is not d-valid.
- $(2) \diamond \diamond p \to \diamond p \lor p \text{ is } \mathsf{d}\text{-valid.}$

References

[1] McKinsey J. C. C., Tarski A., The algebra of topology, Annals of Mathematics 45, 141–191 (1944)