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Why we need homology?

Drawbacks of the fundamental group:

1 Computationally difficult;

2 Some “holes” fail to be detected, for example we have:

π1(R3) = 0 and π1(R3 \
◦
D3) = 0
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Why we need homology?

One possible solution is to employ Higher homotopy groups, those, however, come
with their own problems:

1 Sometimes detects “holes” of dimensions higher than desired. For example:

π3(S
2) = Z

2 Even harder to compute.

Homology provides a computationally (relatively) feasible procedure for detecting holes
that stops counting at the desired dimension.
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Manifolds

A n-dimensional manifold is a topological space with the property that each point has
a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean
space.
A topological n-dimensional manifold with boundary has a neighborhood
homeomorphic to either Rn or the so called n-dimensional half-space Hn.



Motivations Triangulation and simplices Faces and orientation Simplicial Homology Beyond simplicial homology

Manifolds

Notice that n-dimensional manifolds are locally euclidean.

1 1-manifold: the real line R, the interval (−1, 1) and the circle S1

2 2-manifold: an arbitrary surface Σ

Every topological manifold is homeomorphic to a closed subset of Rn for n ∈ N
sufficiently large.
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Triangulation

In homology, one aims to characterize properties of complex spaces without having to
mention the complex spaces themselves. Triangulation gives us a way to do so:

A Triangulation of a topological n-manifold M is a homeomorphism of M to the
polyhedron of a finite n-dimensional simplicial complex.

We can conceive each manifold as a structured collection of generalized triangles,
named simplices which carry all the relevant data of the original space.
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Standard simplex

The Standard n-simplex is defined as the set:

∆n := {(t0, . . . , tn) ∈ I n+1 | t0 + · · ·+ tn = 1}

for each integer n ≥ 0.

In other words, ∆n is the convex hull of its (n + 1)-vertices, which are the standard
basis vectors of Rn+1.
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Standard simplices, examples

We readily see that:

the standard 0− simplex is just the point: {1} ⊆ R;
the standard 1− simplex is a path i.e., a line in R2 homeomorphic to [0, 1];

the standard 2− simplex is the region in R3 bounded by a triangle.

etc.

by triangulating any surface Σ, we conceive it as the union of copies of ∆2 such that
the intersection of any ∆2

i , ∆
2
j is either ∅ or a copy of either ∆1 or ∆0.
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Triangulation: example

(a) A triangled torus

(b) A torus!
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Simplicial complexes

A simplicial complex K consists of two sets V and S called the set of vertices and the
set of simplices respectively.
The elements of S are nonempty finite subsets of V and σ ∈ S is called an n-simplex
of K if it has n + 1 elements. Further, the following is required:

1 Every vertex v ∈ V gives rise to a 0-simplex in K , i.e {v} ∈ S

2 If σ ∈ S then every subset σ′ ⊂ σ is also an element of S
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Faces and boundary faces

Faces

For any n-simplex σ, we say σ′ is a face of σ if σ′ ⊂ σ.
If, in particular, σ′ is a n − 1 face of σ (i.e., if it has n vertices), we say σ′ is a
boundary face of σ.

With this in mind, condition 2) above simply means that a simplicial complex always
contains all of its boundary faces.
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The K-th boundary face

We denote the kth boundary face of a simplex σ = {v0, ..., vn} as ∂(k)σ.
Intuitively, this is the convex hull of {v0, ..., v̂k , ..., vn} where v̂k denotes the exclusion
of the k-th vertex.

The kth boundary face of a simplex ∆n is: ∂(k)∆
n = {tk = 0} ⊂ ∆n.

Notice that ∂(k)∆
n ∼= ∆n−1 through the map:

(t0, ..., tk−1, 0, tk+1..., tn) 7→ (t0, ..., tk−1, tk+1..., tn)



Motivations Triangulation and simplices Faces and orientation Simplicial Homology Beyond simplicial homology

Polyhedra

To embed spaces in simplicial complexes, we need to equip the latter with a topology.
For K = (V , S), and any σ ∈ S , we define a subspace of RN for each σ = {vi1, ..., vik}
as follows:

∆σ = {(t1, ..., tN) ∈ IN | vi1 + ...+ vik = 1 , vj = 0 for all vj /∈ σ}

∆σ is here homeomorphic to the original simplex σk but it has now an obvious
topology as a subspace of RN .
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Polyhedra

For K a simplicial complex, the polyhedron of K is then the space

| K |:=
⋃
σ∈S

∆σ ⊂ Rn

A triangulation of a topological n-manifold M is a homeomorphism of M to the
polyhedron of a finite n-dimensional simplicial complex.
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Polyhedra: example

Let V = {1, 2, 3, 4} and S is the down-set of {A,B} with A = {1, 2, 3} and
B = {2, 3, 4}.

|K | ∼= R× R
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Orientation

In the following, we are going to make use of “boundary faces” to compute the
homology group of surfaces. However, to ensure that a surface really has boundaries
we are going to request that it is orientable.

For our purposes, an orientation of a surface is a choice of which loop around any
point should be labeled “clockwise” or “counterclockwise”.
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Orientation

For a simplicial complex K = (V ,S) an orientation of an n-simplex σ ∈ S for n ≥ 1 is a
an equivalence class of orderings of the vertices v ∈ σ, where two orderings are defined
to be equivalent if and only if they are related to each other by even permutation.
An orientation of a 0-simplex is defined simply as assignment of the number +1 or -1
to the vertex.

This means that every point has either a positive or a negative orientation.
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Orientation

Given an oriented n-simplex for n ≥ 2 with vertices v0, . . . , vn ordered accordingly, the
induced boundary orientation of its kthface ∂(k)σ is defined as the same ordering of its
vertices if k is even and otherwise it is defined by any odd permutation of this
ordering. For n = 1, the boundary orientation are defined by assigning +1 to
∂(0)σ = {v1} and -1 to ∂(1)σ = {v0}.
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Oriented triangulation

An oriented triangulation of a closed surface Σ is a triangulation Σ ∼=| K | together
with a choice of orientation for each 2-simplex in the complex K such that for every
1-simplex ∆σ ∈ K , the two induced boundary that inherits as a boundary face of two
distinct 2-simplices are opposite.
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Oriented triangulation: example

Figure: An oriented triangulation of the 2-Torus
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Un-orientable objects

Figure: The Klein bottle
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The main idea

Take a simplicial complex K = (V , S) with associated polyhedron X :=| K | and for
each integer n ≥ 0 and let S(n) ⊂ S denote the set of n-simplices. As auxiliary data we
also a fix a group G . We choose G to be either Z or Z2.
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n-chains

The group of n-chains in K with coefficients in G is the abelian group

Cn(K ;G ) :=
⊕
σ∈Sn

G ,

whose elements can be written as finite sums Σiaiσi with ai ∈ G and σi ∈ S(n) with
the group operation defined by:

Σiaiσi +Σibiσi = Σi (ai + bi )σi
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n-chains (geometrically)

In general, we only require G to be abelian, however, by setting G = Z we can consider
Cn(K ,Z) as the union of all n-simplices in |K | with orientation determined by the
coefficients in Z i.e., ±1.
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The boundary operator

We can conceive the nth-simplicial homology group of a space X as the free abelian
group of the n-dimensional simplices in X without boundaries, quotiented by the
boundaries of n + 1-dimensional simplices in X .

Recall the notation ∂(k)σ to denote the kth-boundary face of a simplex σ. We can
express the boundary of a simplex σ as:

∂σ =
n∑

k=0

ϵk∂(k)σ ∈ Cn−1(K ,Z)

Where ϵ is 1 if ∂(k)σ’s chosen orientation is the same as the orientation it inherits from
σ and −1 otherwise.
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The boundary operator

The ∂n operator determines induces a unique group homomorphism:

∂n : Cn(K ,G ) → Cn−1(K ,G ) via the mapping
∑
i

aiσi 7→
∑
i

ai (∂σi )

Moreover, notice that the boundary of a n−simplex is always a n − 1-simplex with
empty boundary. So we set:

∂n−1 ◦ ∂n = 0 for all n ∈ N
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Cycles and boundaries

Cycles

We call the subgroup ker ∂n ⊂ Cn(K ;G ) the group of n-cycles or, equivalently, the
closed n-chains.

Boundaries

We call the elements of the subgroup im ∂n+1 ⊂ Cn(K ;G ) boundaries.
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The simplicial homology

The fact that ∂n−1 ◦ ∂n = 0 implies that im(∂n+1) is a subgroup of ∂n since, in
particular, it a subset of the kernel.

Since all Cn(K ,G ) are abelian, all subgroups are normal, so we can consider the
quotiented subgroups to obtain an abelian group.

Simplicial homology

The nth simplicial homology group of the complex K with coefficients in G is

H∆
n (K ;G ) := ker ∂n/im ∂n+1
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Torus!
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The Hauptvermutung and Singular Homology

Theorem

For any simplicial complex K the simplicial homology groups H∆
n (K ;G ) depend (up to

isomorphism) on the topological space X = |K |, i.e. the polyhedron of K , but not on
the complex K itself.

The request that simplicial homology groups be independent from the choice of the
polyhedral complex was founded on a conjecture, the Hauptvermutung, stating that
every pair of triangulations of a given space could be turned into one by subdivision.
However, the Hauptvermutung was proven false in the ’60s and the proof of the above
theorem had to pass through the development of Singular Homology.
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The idea of singular homology

The main idea of singular homology is to find a topological invariant of a space X that
correspond to its simplicial homology whenever X is a polyhedron, but does not
explicitly make use of simplicial complexes.

To do so we need to consider not simplices, but continuous maps from simplices to our
space of choice.
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The idea of singular homology

Singular n-simplices

Given a topological space X , a singular n-simplex is a continuous map σ; ∆n → X .
We denote the set of singular n-simplices for X as Kn(X ).

Singular n-chain groups

The singular n-chain group of X is defined as:

Cn(X ;G ) =
⊕

σ∈Kn(X )

G
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The idea of singular homology

Singular boundary map

The singular boundary map ∂σ : Cn(X ;G ) → Cn−1(X ;G ) is defined as the restriction
of σ to each of the faces:

n∑
k=0

(−1)k(σ ↾∂:(k)∆n)

We can then define the singular n-th homology group of a chain complex.

Singular n-th Homology group

Hn(X ;G ) = ker∂n \ im∂n+1.
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The idea of singular Homology
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Thank you!
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