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Plan for the day

Recap

New stuff

Break from 11h45-12h
More new stuff



Recap: generating new topologies

Definition (subspace)

Let (X,7) beatsand S € X. We denote by 75 the subspace topology on S
defined as

75 :={Un S|Uer}.

Definition (finite product top) |

Let X and Y be ts. We define a topology on the product X x Y, called the
product topology, as follows: a set Uy x Uy € X x Y is basic open :iff Uy is
open in X and U; is openinY.

Lemmas: Both constructions can be obtained by taking bases for original
space(s).

Proposition: The constructions commute.



Recap: closed sets, closure and interior

Definition

Let (X, 7) be ats. We say that a set U € P(X) is closed if its complement is open; i.e,
if(X-U)er.

Definition
Let X beatsand S € X. We denote by

c(S) =S :=[|{S < C| Cis closed}

the closure of S, which is the smallest closed set K such that S € K.

We denote by
int(S) := | J{U = S| U is open}

the interior of S, which is the largest open set K such that K < S.

Observation: Using this def,, we get:

(C) Sc X isclosediff S = S;
(0) S < X isopeniff S =int(9).



Recap: neighbourhoods

Definition |
Givenats (X,7)and z € X,V < X is a neighbourhood of x :iff there
isan open set U such thatz e U € V.

Observe that if a neighbourhood V of a point z is open, the

definition simplifies: V' is an open neighbourhood of a point x iff

2z €V and V is open.

Suppose X isatsand S < X. Then TFAE for a point z € X:
x is in the closure of S; i.e, x € cl(S).

All open neighbourhoods U of z have non-empty intersection
with S;ie, Un S # @.



Recap: summary of epistemic intuition

Logic Topology

Epistemic worlds/situations/etc. Points, z € X

Verifiable propositions Opensets,U e

Falsifiable propositions Closed sets, U¢ e 1
Verifiable propositions true at Open neighbourhoods U of
(Sub)basic verifiable propositions | (Sub)basic opens




Continuity



Recap: continuous and open maps (and why the latter do not

formalise continuity)

Definition (Continuous map) |

Let (X,7x), (Y, 7y ) betsand f : X — Y a map between them. Then f is continuous
iff for all U € Y open in Y, the preimage f~![U] := {z € X | f(z) € U} is open in X;
ie,

YUCY(Uery — flU]erx).

Definition (Open map) |
Let (X,7x) and (Y, 7y) bets,and f : X — Y a map between them. We say that f is
open if for every open U in X, its image f[U] = {f(z) e Y | z € U} is open in Y, that
is,

VUQX(UETX e f[U] ETy)‘

Example

Consider the function
z ifz<0
0 otherwise

f:R—>R, f(;r)'—>{

We showed that f is continuous but not open. 8



Continuous functions

Definition ‘

Let (X,7x),(Y,7y) betsand f: X — Y a map between them. Then f is
continuous :iff forall U € Y open in Y, the preimage
FHU] :={z e X | f(x) e U} isopenin X; ie,

YUCSYUery = f[U]erx).

Let f: X — Y be a map between topological spaces. Then TFAE:
f is continuous

For every S c X: f(S) < f(S), i.e, if z € clx(5) then f(z) € cly (f(S))

Interpretation: For S € X and = € X, we say that = is close to S :iff z € cl(S).
Then £ is continuous iff
for every S € X, f maps points close to S to points close to f(S).

Proof. |
See blackboard. O



More equivalent definitions of contintuity

Let f: X — Y be a map between topological spaces and By a (sub)basis for the
topology on Y. Then the following are equivalent:

f is continuous.
For every (sub)basic open U e By, its preimage f=1[U] is open in X.
For every closed set U in Y, its preimage f~'[U] is closed in X.

For every =z € X, whenever V C Y is a (basic) open neighbourhood of f(x),
there is an open neighbourhood U < X of = such that f[U] = V.

Proof.

We covered 1. < 2. on Friday, the remaining is left as an exercise. O

Remark: f is said to be continuous at a point = € X if condition 4. holds for x.

You should show that under the “close to"-interpretation, we have that f is
continuous at a point z € X iff

(#)i0ca for every S c X, if z is close to S then f(z) is close to f[S].



Continuous maps between S4 frames

- Topological spaces are much more and much else than R; likewise must the top.
notion of continuity cover much more and much else than continuity on R.
- What are the continuous maps on reflexive and transitive Kripke frames?

Definition

Let§ = (W, R),§ = (W', R") be Kripke frames. Amap f : W — W’ satisfies
- the forth condition if whenever z Ry, we have f(z)R’f(y); and
- the back condition if whenever f(z)R'y’, 3y € W st. xRy and f(y) = /'

Let§ = (W, R) and § = (W', R") be two reflexive and transitive Kripke frames,
equipped with the Alexandroff topology, and f : W — W’ a map between them. Then:

f satisfies the forth condition if and only if f is continuous.

f satisfies the back condition if and only if f is open.

Proof. |
See blackboard. O

Example of open, but not continuous map |

See blackboard. n



Homeomorphisms, embeddings, and quotient maps

Definition
Let f: X — Y be a map between ts. We say that f is

- a quotient map if (i) it is surjective and (ii) forall U € Y,

U is open in Y iff 7" (U) is open in X;
- a homeomorphism if it is bijective, continuous and open; and
- a (topological) embedding or an interior map if the restriction
X — f[X]
is a homeomorphism (where f[X] € Y has the subspace topology).

Important: Homeomorphism is the topological version of an “isomorphism”:
Whenever topological spaces are homeomorphic, they are topologically the
same (i.e., have the same top. properties).



Characterizing embeddings and quotient maps

Definition |

Let f: X — Y be a map between ts. Then f is closed if for every closed U in
X, itsimage f[U] = {f(z)eY |z e U}isclosedinY.

Let f: X — Y be a map between ts. Then:

f is a quotient map if and only if (i) f is surjective and (ii’) forall U € Y,
U is closed in Y if and only if f~'(U) is closed in X.

If fis a quotient map, then f is surjective and continuous.

If f is surjective, continuous and open, then f is a quotient map.
If f is surjective, continuous and closed, then f is a quotient map.
If fis an embedding, then f is injective and continuous.

If fis injective, continuous and open, then f is an embedding.

If fis injective, continuous and closed, then f is an embedding.

Proof. |
(0.9)-(3.q) follow almost directly by definition. (3.e) matches a HW exercise. So | 5

we show (1.e) and (2.e) (see blackboard). O



“Quotienting is like gluing”

Definition (quotient topology)
Let X be ats, ~ an equivalence class on X, and

q: X - X/~ x— [z]-
The quotient topology on X/~ is defined as follows:

U < X/~ is open :iff ¢ }[U] is open in X.

Gluing endpoints of an interval to obtain a circle
See blackboard.

14



Some preliminaries for Tuesday and
Wednesday



Filters and filter bases

Definition (Filter and filter base) ‘
Let X be a set. A collection of subsets F < (P(X) — {&}) is a filter base :iff

- XeF,

- IfA,Be Fthen An BeF.
We say that a filter base is a filter if it is upwards closed:

- IfAe Fand Ac B,then Be F.

Let X be a set, and F a filter base. Then the upwards closure of F
F':={Cc X:3Ge F,GcC},

is a filter.

Given ats (X, 7) and z € X, we denote the set of neighbourhoods of = by A/ (z).

Let (X, 7) beatsand z e X. Then () is a filter.

Proof. |
See blackboard. O



Convergence and filter (bases)

Definition |
Let (X, ) be a topological space and F < 7 a filter (base). We say
that the filter (base) F' converges to a point x, and that z is a limit of
the filter (base), if and only if for every U € N(x), there is some

Ve FsuchthatV < U.

Note that the notion of convergence does not say anything about
uniqueness.



That's it for today. Please read section 4.1 and
4.2 to prepare for tomorrow’s tutorial.
Any questions?



